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Consideration of the chemical potential of  an electron in a wavefunction 
suggests that a quantity called the local orbital eigenvalue and its variation 
in space provides a method of testing the balance of a basis set as a function 
of spatial position. The Har t ree-Fock method as applied to the helium and 
neon atoms is used as an example. 
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The chemical potential of  the electrons in an atom or molecule has been defined 
using density functional theory. Hohenberg and Kohn showed [1], in principle 
at least, that the energy is a functional of  the ground state electron density E[p]. 
They also proved the existence of a variational condition on E[p]. The chemical 
potential ~ is defined as the functional derivative 

=(6Elap)~ (1) 

(with the external potential v held fixed). One consequence of density functional 
theory is tha t /z  is a constant, invariant with respect to position, in any electronic 
system [1, 2]. That is, the energy change resulting from an infinitesmal addition 
of  electron density is the same regardless of  where in space that density is added. 
Notice that this must be the case for the exact density; if  it were not, the energy 
could be lowered by a redistribution of electron density. This spatial invariance 
is similar to the invariance of the local energy defined as 

E = (H'~)I'~. (2) 

I f  the Schr6dinger equation is satisfied exactly, the local energy defined above 
will be constant in configuration space. 
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The chemical potential and its features have also been studied in wavefunction 
theory [3]. If the energy is considered to be a functional of the natural orbitals 
and occupation numbers of some system E[Xi ,  ni], 'the chemical potential (for 
the exact natural orbitals and occupation numbers) is the same for each of those 
orbitals. That is 

tz = (OE/ani )Xk ,  nj for all i and k with j # i. (3) 

One important feature of an exact wavefunction written in terms of the natural 
orbitals is that all the occupation numbers turn out to be less than 1.0; hence 
they need not be constrained from exceeding 1.0 in order to satisfy the Pauli 
Principle. The equal orbital chemical potential theorem requires this situation. 
For approximate wavefunctions which involve relatively few orbitals and 
configurations, the orbital occupation numbers must be constrained to be ni -< 1 
in order to avoid violating the Pauli Principle. The addition of these constraints 
invalidates the proof  of Parr et al. [3], and the energy of such a wavefunction 
can have a different sensitivity with respect to the occupancy of the various 
orbitals. In the Hartree-Fock method, this is equivalent to stating that different 
orbitals can have different eigenvalues because 

ei = OE/ani .  (4) 

In many wavefunction methods, the total energy is written as a functional of the 
occupied orbitals 6i and perhaps some variable occupation numbers. Typically 
the oribtals are optimized by taking the variation of the total energy with respect 
to an arbitrary change in the orbitals. That is the functional derivative ,SE/cSqSi. 
The resulting variation equation can be manipulated into eigenvalue equations 
such as HiqSi = ei~i where Hi is some effective Hamiltonian. The simplest example 
is the Har t ree-Fock method in which (for a closed shell) the energy is the 
functional 

E [ 6 i  ] = 2 Y. (,~,[hl~,i)+Y~ (2(6i,#j [ 6i6A - (6i6j I'~j6i)) (5) 
i i,j 

In this case each effective Hamiltonian turns out to be the same, and is called 
the Fock operator 

F = Hi = -0.5V 2 - E  Z a / r ,  + E  (24 - Kj) (6) 
a j 

In the standard LCAO expansion of the molecular orbitals, the quality of the 
solution of the Fock eigenvalue equation FqSi = ei~ typically depends only on 
the quality of  the basis set used. Usually, a negligible numerical error exists in 
the integral evaluation or matrix manipulations. The eigenvalue itself can be 
evaluated as the average (~bilFl~bg). However, consider dividing the eigenvalue 
equation by the eigenfunction ~b~. 

e,(~) = ( F 6 i ) / 6 i  (7) 

is a sort of local energy analog for the eigenvalue. This quantity could be named 
the orbital chemical potential, but we prefer to call it the local eigenvalue. The 
exact solution to the Hartree-Fock problem must yield local eigenvalues that are 
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constant in space. Such will not be true in any actual LCAO approximate solution 
to the problem, and the variation of the expression (F~b;)/&, will be a measure 
of the relative quality of  the solution for that particular orbital. 

Written out in detail for the Hartree-Fock method as an example, the local 
eigenvalue is 

e, (~) = -0.5 (724,)/~)i - -  • Za/r "~ E {2Jj -- (Kj~b,)/d),} (8) 
I a j 

where 

Jj.( ~,) = f dV2 I~bJ(~2)12 (9) 

and 

Kj( ~l) = f , 1 dV2,Pj ( f2) ~ P,2chj( Y2) (10) 

are the usual coulomb and exchange operators. The evaluation of these terms 
requires nothing worse than some three-center nuclear attraction types of integrals. 

Detailed inspection of Eq. (8) near the orbital node provides the condition of q~, 
in that region. The expression 

f dV2q~j(~O (11) 
1 

must approach zero at least as rapidly as (hi does. Because this condition depends 
on all the occupied orbitals, it does not reduce to a general helpful result. One 
would expect that roundoff error might cause the e,(F) to vary somewhat near 
nodes in the eigenfunction, but elsewhere, a changing value for e,(~) implies a 
difference in basis set quality. 

A quantitative overall measure of the deviation of the local eigenvalue could be 
a useful item. The most appropriate quantity is a root mean square average of 
the difference of e(f)  from the orbital energy e; call it A. 

A={f  l4)(r)'2[e(r)-E]2 dV} 1/2. (12) 

It seems reasonable to include the orbital density as a weight factor in this 
integrand to emphasize the most important region of space. 

Hartree-Fock solutions for the helium atom provide a simple example to illustrate 
the usefulness of this method for testing basis sets. We have evaluated e(r) for 
three different basis sets for helium. First the hydrogenic (exponent = 2) orbital; 
second the optimized (~" = 1.6875) single-zeta orbital; and finally the optimized 
double-zeta wavefunction of  Huzinaga [4]. All three are displayed in Fig. 1 where 
the superiority of Huzinaga's basis set is clearly evident. Only in a very small 
region near the nucleus does it display noticeable variation in its local eigenvalue. 
Closer inspection does show a small variation at larger r. 
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Fig. 1. The local eigenvalue (in atomic 
units) for the helium atom is shown 
for three basis sets: hydrogenic ( ), 
optimized single-zeta ( - - - ) ,  and 
optimized double-zeta ( . . . .  ) 

The root mean square deviation of the local eigenvalue for helium is 0.383 (in 
atomic units) for the hydrogenic wavefunction. It improves only to 0.380 for the 
optimum single-zeta orbital. For the optimum double-zeta basis set, this quantity 
is very small, ~ = 0.0053; as implied by the plot in Fig. 1, the double-zeta basis 
gives an excellent description of the Hartree-Fock orbital in helium. 

The 2s orbital of Hartree-Fock treatments of the neon atom provides an example 
of the difficulty of obtaining accurate solutions to the eigenvalue equations near 
a node in the wavefunction. Figure 2 shows the 2s orbital's local eigenvalue for 
three basis sets each of which has optimized exponents: minimum 5, double-zeta 4, 
and extended 6 (6s, 4p). Each of the bases shows wild variation in the local 2s 
eigenvalue out to the node in the 2s orbital (at 0.3 bohr). Beyond that radius, 
the extended basis is clearly superior to the smaller sets. The root mean square 
deviation of  the local eigenvalue for the 2s orbital in neon is dominated by the 
region near the node. Consequently, the values for it seem large. The extended 
basis set gives by far the best A = 1.86; the minimum basis result is 2.44, and the 
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Fig. 2. The local eigenvalue (in atomic 
-6  units) for the neon 2s orbital is shown 

{i for three basis sets: minimum ( . . . .  ), 
-8 {i double-zeta ( ), and extended 
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double-zeta value is 5.52. The neon ls  orbital is, of  course, nodeless, and its local 
eigenvalue is much better behaved with a A = 0.778 for the extended basis set. 

It is proposed that the spatial variation of the local orbital eigenvalues is a fairly 
easy test of  the relative quality of  a basis set in any electronic structure calculation. 
The Har t ree-Fock  example worked out here is readily generalizable to unrestric- 
ted Hartree-Fock,  valence-bond, or other methods, thereby generating a basis 
set test that is specific to the type of wavefunction under consideration. Because 
of the erratic behavior near orbital nodes, it seems best not to rely on the root 
mean square deviation numbers, but to make a more qualitative comparison of 
plots of the spatial variation of the local eigenvalues. 
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